

Now let us suppose that both waves are scattered in such a way that they traverse different paths. The phase relationship between the scattered waves, which will depend upon the difference in path length, is important. One possibility results when this path length difference is an integral number of wavelengths. As noted in fig, these scattered waves (now labeled 1'and 2') are still in phase. They are said to mutually reinforce (or constructively interfere with) one another; and, when amplitudes are added, the wave shown on the right side of the figure results. This is a manifestation of **diffraction**, and we refer to a diffracted beam as one composed of a large number of scattered waves that mutually reinforce one another. Chapter 3-100

The magnitude of the distance between two adjacent and parallel planes of atoms (i.e., the interplanar spacing dhkl) is a function of the Miller indices (h, k, and l) as well as the lattice parameter(s). For example, for crystal structures having cubic symmetry,

For BCC iron, compute (a) the interplanar spacing, and (b) the diffraction angle for the (220) set of planes. The lattice parameter for Fe is 0.2866 nm (2.866A°). Also, assume that monochromatic radiation having a wavelength of 0.1790 nm (1.790 A°) is used, and the order of reflection is 1.

SOLUTION

(a) The value of the interplanar spacing d_{hM} is determined using Equation 3.11, with a = 0.2866 nm, and h = 2, k = 2, and I = 0, since we are considering the (220) planes. Therefore,

$$k_{l} = \frac{a}{\sqrt{h^{2} + k^{2} + l^{2}}}$$
$$= \frac{0.2866 \text{ nm}}{\sqrt{(2)^{2} + (2)^{2} + (0)^{2}}} = 0.1013 \text{ nm} (1.013 \text{ Å})$$

(b) The value of θ may now be computed using Equation 3.10, with n = 1, since this is a first-order reflection:

 $\sin \theta = \frac{n\lambda}{2d_{hkl}} = \frac{(1) (0.1790 \text{ nm})}{(2) (0.1013 \text{ nm})} = 0.884$ $\theta = \sin^{-1}(0.884) = 62.13^{\circ}$

The diffraction angle is 2θ , or

dh

 $2\theta = (2)(62.13^{\circ}) = 124.26^{\circ}$

105

	Peak	20	Peak	20	
	i short to	20.20	5	46.19	
	2	28.72	6	50.90	
	3	35.36	7	55.28	
	4	41.07	8	59.42	
Det peak, ar We can f owest de	termine the nd the lattic first determi enominator	crystal struct e parameter c ne the $\sin^2 \theta v$, 0.0308.	ure, the indices of the material. alue for each pea	of the plane produ k, then divide throu	cing each
Det peak, ar We can f owest de	first determine enominator	crystal struct e parameter of ne the $\sin^2 \theta v$, 0.0308. $\sin^2 \theta$	ure, the indices of the material. alue for each pea $\sin^2\theta/0.0308$	of the plane product k , then divide through $\hbar^2 + k^2 + l^2$	igh by the
Det peak, an We can f owest de	first determine enominator 20 20.20	crystal struct e parameter c ne the sin ² θ v , 0.0308. sin ² θ 0.0308	ure, the indices of the material. alue for each pea $\sin^2 \theta / 0.0308$	of the plane product k , then divide throw $\frac{\hbar^2 + k^2 + I^2}{2}$	cing each igh by the (<i>hkl</i>) (110
Det peak, ar We can f owest do	ermine the nd the lattic first determi enominator 20 20.20 28.72 25.20	crystal struct e parameter of ne the sin ² θ v, 0.0308. sin ² θ 0.0308 0.0615	ure, the indices of the material. alue for each pea $\frac{\sin^2\theta/0.0308}{2}$	of the plane product k , then divide throw $h^2 + k^2 + I^2$	igh by the (<i>hkl</i>) (110) (200)
Det peak, ar We can f owest do Peak	ermine the nd the lattic first determi enominator 20 20.20 28.72 35.36 41.07	crystal struct e parameter of ne the sin ² θ v, 0.0308. $sin^2 \theta$ 0.0308 0.0615 0.0922 0.1320	ure, the indices of the material. alue for each pea $\frac{\sin^2 \theta / 0.0308}{2}$	of the plane product $h^2 + k^2 + l^2$ $\frac{2}{4}$ $\frac{6}{8}$	cing each igh by the (<i>hkl</i>) (110 (200 (211) (220
Det peak, ar We can f owest de	ermine the nd the lattic first determi enominator 20 20.20 28.72 35.36 41.07 46.19	crystal struct e parameter c ne the sin ² θ v, 0.0308. $sin^2 \theta$ 0.0308 0.0615 0.0922 0.1230 0.1230	ure, the indices of the material. alue for each pea $sin^2 \theta / 0.0308$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{4}{5}$	of the plane products $h^2 + k^2 + l^2$ $\frac{2}{4}$ $\frac{6}{8}$ 10	(<i>hkl</i>) (110) (200) (211) (220) (310)
Det peak, ar We can f owest do Peak	ermine the nd the lattic first determi enominator 2θ 20.20 28.72 35.36 41.07 46.19 50.90	crystal struct e parameter c ne the $\sin^2 \theta v$, 0.0308. $\frac{\sin^2 \theta}{0.0308}$ 0.0615 0.0922 0.1539 0.1539 0.1847	ure, the indices of the material. alue for each pea $sin^2 \theta / 0.0308$ 1 2 3 4 5 6	of the plane product k, then divide throw $\frac{\hbar^2 + k^2 + l^2}{2}$	cing each igh by the (<i>hkl</i>) (110 (200 (211 (220 (310) (222
Det peak, ar We can f owest do Peak	ermine the nd the lattic first determi enominator 2θ 20.20 28.72 35.36 41.07 46.19 50.90 55.28	crystal struct e parameter c ne the $\sin^2 \theta v$, 0.0308. $\sin^2 \theta$ 0.0615 0.0922 0.1539 0.1539 0.1547 0.2152	ure, the indices of the material. alue for each pea $sin^2 \theta / 0.0308$ 1 2 3 4 5 6 7	of the plane products k , then divide throw $\frac{\hbar^2 + k^2 + l^2}{2}$ $\frac{2}{4}$ $\frac{6}{8}$ 10 12 14	cing each igh by the (<i>hkl</i>) (110 (200 (310 (310) (222 (321)

106

Chapter 3 - 105

$$\sin^2\theta = \left(\frac{\lambda^2}{4a^2}\right) \left(h^2 + k^2 + l^2\right)$$

The term in parentheses $\left(\frac{\lambda^2}{4a^2}\right)$ is constant for any one pattern (because the X-ray

wavelength λ and the lattice parameters a do not change). Thus $\sin^2 \theta$ is proportional to $h^2 + k^2 + l^2$. This proportionality shows that planes with higher Miller indices will diffract at higher values of θ .

Since $\left(\frac{\lambda^2}{4a^2}\right)$ is constant for any pattern, we can write the following relationship for any two different planes:

$$\frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{\left(\frac{\lambda^2}{4a^2}\right) (h_1^2 + k_1^2 + l_1^2)}{\left(\frac{\lambda^2}{4a^2}\right) (h_2^2 + k_2^2 + l_2^2)} \text{ or } \frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{\left(h_1^2 + k_1^2 + l_1^2\right)}{\left(h_2^2 + k_2^2 + l_2^2\right)}.$$

The ratio of $\sin^2 \theta$ values scales with the ratio of $h^2 + k^2 + l^2$ values.

In cubic systems, the first XRD peak in the XRD pattern will be due to diffraction from planes with the lowest Miller indices, which interestingly enough are the close packed planes (*i.e.*: simple cubic, (100), $h^2 + k^2 + l^2 = 1$; body-centered cubic, (110) $h^2 + k^2 + l^2 = 3$). and face-centered cubic, (111) $h^2 + k^2 + l^2 = 3$). Chapter 3-109

109

Since h, k, and l are always integers, we can obtain $h^2 + k^2 + l^2$ values by dividing the $\sin^2 \theta$ values for the different XRD peaks with the minimum one in the pattern (*i.e.*, the $\sin^2 \theta$ value from the first XRD peak) and multiplying that ratio by the proper integer (either 1, 2 or 3). This should yield a list of integers that represent the various $h^2 + k^2 + l^2$ values. You can identify the correct Bravais lattice by recognizing the sequence of allowed reflections for cubic lattices (*i.e.*, the sequence of allowed peaks written in terms of the quadratic form of the Miller indices).

Primitive	$h^2 + k^2 + l^2 = 1,2,3,4,5,6,8,9,10,11,12,13,14,16$
Body-centered	$h^2 + k^2 + l^2 = 2,4,6,8,10,12,14,16$
Face-centered	$h^2 + k^2 + l^2 = 3,4,8,11,12,16,19,20,24,27,32$
Diamond cubic	$h^2 + k^2 + l^2 = 3,8,11,16,19,24,27,32$

The lattice parameters can be calculated from:

$$\sin^2 \theta = \left(\frac{\lambda^2}{4a^2}\right) \left(h^2 + k^2 + l^2\right)$$

which can be re-written as:

$$a^{2} = \frac{\lambda^{2}}{4\sin^{2}\theta} \left(h^{2} + k^{2} + l^{2}\right) \text{ OR } a = \frac{\lambda}{2\sin\theta} \sqrt{h^{2} + k^{2} + l^{2}}$$
Chapter 3.110 (1)

110

Peak			$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{2}$			
No.	20	$\sin^2\theta$			$\sin^2 \theta_{\min}$	$h^2 + k^2 + l^2$	hkl	a (Å)
1	38.43	0.1083						
2	44.67	0.1444						
3	65.02	0.2888						
4	78.13	0.3972						
5	82.33	0.4333						
6	98.93	0.5776						
7	111.83	0.6859						
8	116.36	0.7220						

No. 2θ $\sin^{+}\theta$ $\sin^{-}\theta_{min}$ $h^{+}k^{+}l^{-}$ hkl a (A) 1 38.43 0.1083 1.000 2.000 3.000 a (A) 2 44.67 0.1444 1.333 2.667 4.000	eak		. 2 .	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta}$.,,,,,,		
1 38.43 0.1083 1.000 2.000 3.000 2 44.67 0.1444 1.333 2.667 4.000 3 65.02 0.2888 2.667 5.333 8.000 4 78.13 0.3972 3.667 7.333 11.000 5 82.33 0.4333 4.000 8.000 12.000 6 98.93 0.5776 5.333 10.665 15.998 7 111.83 0.6859 6.333 12.665 18.998 8 116.36 0.7220 6.666 13.331 19.997	NO.	20	sin θ			$\sin \theta_{\min}$	$h^{+}+k^{-}+l^{-}$	hkl	a (A)
2 44.67 0.1444 1.333 2.667 4.000 3 65.02 0.2888 2.667 5.333 8.000 4 78.13 0.3972 3.667 7.333 11.000 5 82.33 0.4333 4.000 8.000 12.000 6 98.93 0.5776 5.333 10.665 15.998 7 111.83 0.6859 6.333 12.665 18.998 8 116.36 0.7220 6.666 13.331 19.997	1	38.43	0.1083	1.000	2.000	3.000			
3 65.02 0.2888 2.667 5.333 8.000 4 78.13 0.3972 3.667 7.333 11.000 5 82.33 0.4333 4.000 8.000 12.000 6 98.93 0.5776 5.333 10.665 15.998 7 111.83 0.6859 6.333 12.665 18.998 8 116.36 0.7220 6.6666 13.331 19.997	2	44.67	0.1444	1.333	2.667	4.000			
4 78.13 0.3972 3.667 7.333 11.000 5 82.33 0.4333 4.000 8.000 12.000 6 98.93 0.5776 5.333 10.665 15.998 7 111.83 0.6859 6.333 12.665 18.998 8 116.36 0.7220 6.666 13.331 19.997	3	65.02	0.2888	2.667	5.333	8.000			
5 82.33 0.4333 4.000 8.000 12.000 6 98.93 0.5776 5.333 10.665 15.998 7 111.83 0.6859 6.333 12.665 18.998 8 116.36 0.7220 6.666 13.331 19.997	4	78.13	0.3972	3.667	7.333	11.000			
6 98.93 0.5776 5.333 10.665 15.998 7 111.83 0.6859 6.333 12.665 18.998 8 116.36 0.7220 6.666 13.331 19.997	5	82.33	0.4333	4.000	8.000	12.000			
7 111.83 0.6859 6.333 12.665 18.998 8 116.36 0.7220 6.666 13.331 19.997	6	98.93	0.5776	5.333	10.665	15.998			
8 116.36 0.7220 6.666 13.331 19.997	7	111.83	0.6859	6.333	12,665	18.998			
	8	116.36	0.7220	6.666	13.331	19.997	1		

(3) C	alculate in	e ratio sin	$\theta / \sin^2 \theta_{\min}$	and multiply	by the approp	riate intege	ers.	
Peak No.	20	$\sin^2 \theta$	$1 imes rac{\sin^2 heta}{\sin^2 heta_{\min}}$	$2 imes rac{\sin^2 heta}{\sin^2 heta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2 + k^2 + l^2$	hkl	a (2
1	38.43	0.1083	1.000	2.000	3.000			
2	44.67	0.1444	1.333	2.667	4.000			
3	65.02	0.2888	2.667	5.333	8.000			
4	78.13	0.3972	3.667	7.333	11.000			
5	82.33	0.4333	4.000	8.000	12.000			
6	98.93	0.5776	5.333	10.665	15.998			
7	111.83	0.6859	6.333	12.665	18.998			
8	116.36	0.7220	6.666	13.331	19,997			

Peak			$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 imes rac{\sin^2 heta}{\sin^2 heta_{\min}}$	$3 \times \frac{\sin^2 \theta}{2}$			
No.	20	$\sin^2 \theta$			$\sin^2 \theta_{\min}$	$h^2 + k^2 + l^2$	hkl	a (Â)
1	38.43	0.1083	1.000	2.000	3.000	3	111	4.0538
2	44.67	0.1444	1.333	2.667	4.000	4	200	4.0539
3	65.02	0.2888	2.667	5.333	8.000	8	220	4.0538
4	78.13	0.3972	3.667	7.333	11.000	11	311	4.0538
5	82.33	0.4333	4.000	8.000	12.000	12	222	4.0538
6	98,93	0.5776	5.333	10.665	15.998	16	400	4.0541
7	111.83	0.6859	6.333	12.665	18.998	19	331	4.0540
8	116.36	0.7220	6.666	13.331	19.997	20	420	4.0541
				Diavais iatue	e is <u>race-ce</u>	lered Cub		

Peak No.	2 <i>θ</i>	$\sin^2 \theta$	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2 + k^2 + l^2$	hkl	a (Å)
1	38.43	0.1083	1.000	2.000	3.000	3	111	4.0538
2	44.67	0.1444	1.333	2.667	4.000	4	200	4.0539
3	65.02	0.2888	2.667	5.333	8.000	8	220	4.0538
4	78.13	0.3972	3.667	7.333	11.000	11	311	4.0538
5	82.33	0.4333	4.000	8.000	12.000	12	222	4.0538
6	98.93	0.5776	5.333	10.665	15.998	16	400	4.0541
7	111.83	0.6859	6.333	12.665	18.998	19	331	4.0540
8	116.36	0.7220	6.666	13.331	19.997	20	420	4.0541
				A	verage lattice	parameter i	15 <u>4.05</u>	<u>39 A</u>

