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Tetrahedral void in FCC

Chapter 3 - 82 .GD

Tetrahedral sites in FCC

4R =+2a
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Interstitial Voids in BCC C’r)/.s':‘al

i. Tetrahedral wvoicl

2. Octohecral void
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BCC CRYSTAL

al 000 .

ace C?'J#n/ = BCC Lattice + £ atom motif
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=l atom diameien
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GeoreTry O0F TETRAHEDRAL Voibs in A BCC CRYSTAL

-

P R,

No. of TH veids fcail = Q;‘_"' = 12 THV /cell

shaned .;;awu: = p eTHV/atem

Chapter 3 - 89

GeomeTry oF TETRAHEDRAL VoIDs 1N A BCC Crystac
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Ok rareprar Voios In A BCC CrYsTAL

Centroids

of oHv
located at
face-centres
and edge-
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No. of voids
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Computation of Radius of BCC Interstitial Site

Compute the radius r of an impurity atom that just fits into a BCC octahedral sile in terms of
the atomic radius R of the host atom (without introducing lattice strains).

Chapter 3 - 96 @

95

96



28.10.2021

As Figure 4.3 notes, for BOC, the octahedral interstitial site is situated at the cenler of a unil X R fo .
cell edge. In onder for an interstitial atom Lo be positioned in this site without introducing kattice -Ray DI raction

strain, the atom just touches the two adfaceat host atoass, which
are cormer atoms of he unil coll. The drawing shows aloms oo
the (100) face of a BOC unit cell: the barge circes represent the
host afoms - the small cirche reproscats an interstitial atom that
s positioned in an octabodral site on the cube odge.

On (his drawing &5 poted the unit oell edge keagth — the
distance between the Comters of Uhe corer atoms — which, from

Equation 34, ks oqual 1o
Uit ol e kgt = =7 o o THE DIFFRACTION PHENOMENON

Also shown is that the unit cefl edge longth i oqual 1o two times
the sum of host atomic radius 2R plu fwice the radius of the interstitial atom 27, Le.,

-

Historically much of our understanding regarding the atomic and molecular
arrangements in solids has resulted from x-ray diffraction investigations;
furthermore, x-rays are still very important in developing new materials.

Unitcell odge kongth = 28 + Diffraction occurs when a wave encounters a series of regularly spaced obstacles that

Now, cquating these two unit coll edge length expressions, we et
(1) are capable of scattering the wave, and

4 Ak
WHI=x (2) have spacing's that are comparable in magnitude to the wavelength. Furthermore,
and solving for 7 in terms of R diffraction is a consequence of specific phase relationships that are established between two or more
® 5 waves that have been scattered by the obstacles.
ru -y Jer)
o
r= % 1) = nassw

Chapter 3 - 97 Chapter 3 - 98
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X-RAY DIFFRACTION AND BRAGG’S LAW o Scating  yymg 1
,v event Y
pe— 2 — e
X-rays are a form of electromagnetic radiation that have high energies and short [ p—
wavelengths—wavelengths on the order of the atomic spacing's for solids. e &

Electromagnetic Spectrum

Yf g,
— & —

= A | +
THz 1kHz 1MHz Frequency (Hz) 7
1.0 103 108 10° 102 10% 10" 102 102 A /\ 4 m /\ /
1T 1T 1T T 1 \/ \ \/ \

|IIII1|1|nMiolet

Amplitude —

Long Radio Waves isible Li Wave 2 Wave 2
g - crowaves Visible Light Gamma Rays '
i R — Position —=
Short Radio Waves Y-Rays osition
[ A S A I A Ay Iy W | Consider waves 1 and 2 in fig, which have the same wavelength A and are in phase at pointo o
10° 106 10% 1.0 102 10 10° w2 s Now let us suppose that both waves are scattered in such a way that they traverse different
Tkm 1m lum 1nm paths. The phase relationship between the scattered waves, which will depend upon the

difference in path length, is important. One possibility results when this path length difference

Wavelength, % (m)
is an integral number of wavelengths. As noted in fig, these scattered waves (now labeled

When a bea.m of x-rays impinges on a'solid malerial, a poniOQOfthis bf:am "’VilAl be scattered 1’and 2”) are still in phase. They are said to mutually reinforce (or constructively interfere

in all directions by the electrons associated with each atom or ion that lies within the beam’s path. with) one another; and, when amplitudes are added, the wave shown on the right side of the

Let us now examine the necessary conditions for diffraction of x-rays by a periodic arrangement figure results. This is a manifestation of diffraction, and we

of atoms. @ refer to a diffracted beam as one composed of a large number of scattered waves @
Chapter 3 - 99 that mutually reinforce one another. Chapter 3 -100

99 100
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Wave 3 Scattering Wave 3’
event

DTS

Wave 4
P Wave 4

Amplitude —

Position -
()

Other phase relationships are possible between scattered waves that will not lead to this mutual
reinforcement. The other extreme is that demonstrated in Fig, wherein the path length difference
after scattering is some integral number of half wavelengths. The scattered waves are out of
phase—that is, corresponding amplitudes cancel one another, or destructively interfere (i.e., the
resultant wave has zero amplitude), as indicated on the extreme right side of the figure.
Of course, phase relationships intermediate between these two extremes exist, resulting in only
partial reinforcement.

Chapter 3-101

Consider the two parallel planes of atoms A—A and B-B in Fig, which have the same 4, &, and /
Miller indices and are separated by the interplanar spacing d/kl . Now assume that a parallel,
monochromatic, and coherent (in-phase) beam of x-rays of wavelength X is incident on these two
planes at an angle o. Two rays in this beam, labeled 1 and 2, are scattered by atoms P and Q.
Constructive interference of the scattered rays 1’ and 2° occurs also at an angle o to the planes,
if the path length difference between 1-P-1" and 2-0-2’ (i.e., SO OT) is equal to a whole
number, n, of wavelengths. That is, the condition for diffraction is

i == 0 1A = diygSiN @ + dpgySin @ = 2 dygysin @

Equation is known as Bragg’s law

Chapter 3 -102
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The magnitude of the distance between two adjacent and parallel
planes of atoms (i.e., the interplanar spacing dhki) is a function of the
Miller indices (4, k, and /) as well as the lattice parameter(s).

For example, for crystal structures having cubic symmetry,

a

Hm—————
M VETE+F

Chap(er3-103

X-Ray Diffraction Pattern
zZ V4 zZ
C (o > C

Intensity (relative)

70 B0 %0 101

Diffraction angle 26

Diffraction pattern for polycrystalline o-iron (BCC)

Adapted from Fig. 3.20, Callister 5e.
Chapter 3-104
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For BCC iron, compute (a) the interplanar spacing, and (b) the diffraction angle for
the (220) set of planes. The lattice parameter for Fe is 0.2866 nm (2.866A°). Also,
assume that monochromatic radiation having a wavelength of 0.1790 nm (1.790 A°)
is used, and the order of reflection is 1.

Sorvrion

(a) The value of the interplanar spacing dj is determined using Equation 3.11,
with 2 = 0.2866 nm, and & = 2, k = 2, and / = 0, since we are considering the
(220) planes. Therefore.

gy

—_——— = 0.10130m (1.013 A)
VEPE + @7 + 0

(b) The value of # may now be computed using Equation 3.10. with 2 = 1,
since this s a first-order reflection:

B _ (@179 m) _
2dpy  (2)(0.1013 nm)

0 = sin *(0.884) = 62.13"

sing = 0.884

T'he diffraction angle Is 20, or

20 = (2)(62.13°) = 124.26°

Chapter 3 -105

X-Rays to Determine Crystal Structure
* Incoming X-rays diffract from cryst%l planes.
Q,

+ %
R . ) reflections must
( - be in phase for
a detectable signal

extra

distance Adapted from Fig. 3.19,

travelled Callister 7e.

by wave “2” spacing

d between
planes

Measurement of X-ray
critical angle, Oc, intensity

allows computation of (from
planar spacing, d. detector)

Chap(er3-106
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The results of a x-ray diffraction experiment using x-rays with 1 = 0.7107 A (a
radiation obtained from a molybdenum (Mo) target) show that diffracted peaks
occur at the following 26 angles:

Peak 20 Peak 20

1 20.20 5 46.19
2 28.72 6 50.90
3 3536 7 55.28
4 41.07 8 59.42

Determine the crystal structure, the indices of the plane producing each
peak, and the lattice parameter of the material
We can first determine the sin® # value for each peak, then divide through by the
lowest denominator, 0.0308

Peak 20 sin“@ sin“#,/0.0308 L & ” hk!
20.20 0.0308 1 z

4 28.72 0.0615 2 a

3 35.36 0.0922 3 6

4 a41.07 0.1230 4 H

4 46.19 0.1539 s 10

6 50.90 0.1847 6 12

7 5528 0.2 4 7 14

8 59.42 0.2 8 16

When we do this, we find a pattern of sin® 8/0.0308 values of 1,

7, and 8. If the material were simple cubic, the 7 would not be present, because

Chapter 3 -107( 3 j

PROCEDURE FOR INDEXING CUBIC XRD PATTERNS
When you index a diffraction pattern, you assign the correct Miller indices to each peak (reflection) in
the diffraction pattern. An XRD pattern is properly indexed when ALL of the peaks in the diffraction
pattern are labeled and no peaks expected for the particular structure are missing.

How to we correctly index a pattern?

The correct procedures follow.

Interplanar spacings in cubic crystals can be written in terms of lattice parameters using
the plane spacing equation:

1 _ W+l
F a*

You should recall Bragg's law (4 = 24 sin & ). which can be re-written either as

2% =4d*sin® @ OR sin® & = -
447

Combinung this relatnonship with the plane spacing equation gives us a new relationship:

1 R+ 4sin’ &
— . ———————
d* a® A°

which can be rearranged to:

(0 + & +1%) (EE)

107
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sin26=({%)(hf+k= +)

The term mn parentheses [E] 1s constant for any one pattemn (because the X-ray

wavelength A and the lattice parameters a do not change). Thus sin’ & is proportional to
I +k* +I*. This proportionality shows that planes with higher Miller indices will diffract
at higher values of &

A

Since [ ) is constant for any pattern, we can write the following relationship for any

two different planes:

[ )i <& +8) sy _(K+
-(v)chi geg) =e (HeE

The ratio of sin’ & values scales with the ratio of /* + &% +/* values.

In cubic systems, the first XRD peak in the XRD pattern will be due to diffraction from
planes with the lowest Miller indices, which interestingly enough are the close packed
planes (ie: simple cubic, (100), /* +k* +[*=1; body-centered cubic, (110) A* + &% +1*=2;

and face-centered cubic, (111) #* +&° +1°=3),
Chapter3-109@

Since h. k. and  are always integers. we can obtain 4* +k* +° values by dividing the
sin® @ values for the different XRD peaks with the minimum one in the pattern (i.e.. the
sin’ @ value from the first XRD peak) and multiplying that ratio by the proper integer
(either 1. 2 or 3). This should yield a list of integers that represent the various h* +k* +1°
values. You can identify the correct Bravais lattice by recognizing the sequence of allowed
reflections for cubic lattices (i.e.. the sequence of allowed peaks written in terms of the
quadratic form of the Miller indices).

Primitive W +k®+17 =1.23456.89.10.11.12,13.14.16...
Body-centered W +k +F =2.4.68.10.12.14.16

Face-centered B +k* +1* =3,48.11,12,16,19.20,24,27.32...
Diamond cubic h+ K+ =3,8.11,16.19.24,27.32...

The lattice parameters can be calculated from:
sin? @ = i:-.—](i‘n" +k*+1%)
4a*

which can be re-written as:

= A
4sin” &

a?

(h* +k*+1") OR a=—2 ik

2s5in@
Chapter3-110
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110

100

%

0

Consider the following XRD pattern for Aluminum, which was collected using CuKar
radiation.

!_n:yﬁl)

{ (38.43,100.0)

13 (44.67.46.9)

! (65.02264) (78.13.279) (11636.119)

(11183.122

I (8233,78)
(9890336)
i

! 200"
1 T T T T T T T T T
0 5 0 15 2 X 0 B ® 4 N 5 0 6 WM ¥ W OE 0 95 100 105 U0 s 10
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Index this pattern and determine the lattice parameters

Steps:
(1) Identify the peaks.
(2) Determine sin® & .
(3) Calculate the ratio sin® & /sin® 8, and multiply by the appropriate integers.
(4) Select the result from (3) that yields h® +&° +/7 as an integer.
(5) Compare results with the sequences of h* + k* +/° values to identify the Bravais
lattice
(6) Calculate lattice parameters

Here we go!
(1) Identify the peaks and their proper 28 values. Eight peaks for this pattern. Note:

most patterns will contain ay and @ peaks at higher angles. It is common to neglect
a peaks.

2 E |y
Peak sin” 8, s o
No. 20 sin’@ sin’ O, | WP+ | hk
1 3843
2| aae7
a[ es02
4 7813
5

8|

7

=

a(A)

8233
6893
11183
8| 11636

111

112
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(2) Determine sin’ 4.

(3) Caleulate the ratio sin® 8 /sin’ 8, and multiply by the appropriate integers.

- sin? @ g sin” 6

Peak : sin®f, | sin’ 6, (3 _""“'6 o '
No. 280 sin @ sin” G | WHE+F | WK | a(A)

1 3843 0.1083

2| 4467 0.1444

3 6502 0.2888

4 78.13 03972

5 8233 04333

6| 98.93 0.5776

71 111.83 06859
| o] 11636 | o7220 | L1

Chapter3-113
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sin® @ sin’ @
Ix—5 2% —s 2
Peak sin” Oy Sin” O[3 su: g
No. | 28 | sin'e sin” O | WK+ | WK | a(A)
1 3843 0.1083 1.000 2.000 3.000
2| 4467 0.1444 1.333 2.667 4.000
3] 6502 0.2888 2667 5333 8.000
4 7813 0.3972 3.667 7.333 11.000
5| 8233 04333 4.000 8.000 12.000
6] 98.93 0.5776 5.333 10.665 15.998
7] 111.83 0.6859 6.333 12.665 18.998
8] 116.36 0.7220 6.666 13.331 19.997
Chapter 3 -114
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(4) Select the result from (3) that most closely yields h* +k* + 17 as a series of integers.

(5) Compare results with the sequences of h* +k° +1° values to identify the miller
indices for the appropriate peaks and the Bravais lattice.

sin’ @ sin’ @
Ix———|2x— 2

Peak sin” G S$in° Oy |35 5“} 4
No. 26 sin’6 sin” B | Wi+ | bkl | a(A)

1 38.43 0.1083 1.000 2.000 3.000

2| 4467 0.1444 1.333 2667 4.000

3| 6502 0.2888 2667 5333 8.000

4 7813 0.3972 3.667 7.333 11.000

5 82.33 0.4333 4.000 8.000 12.000

6] 9893 0.5776 5333 10.665 15.998

7] 111.83 0.6859 6.333 12.665 18.998

8| 116.36 0.7220 6.666 13.331 19.997
Chapter3-115 @
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sin’ @ sin’ @
Ix——|2x— 3
Peak sin” 6, sin” @ |3, 5““ (2
No. 26 sin’d sin” G, | P+C+E | bk | a(A)
1 38.43 0.1083 1.000 2.000 3.000 3 m 4.0538
2| 4467 0.1444 1.333 2667 4.000 4 | 200 | 40539
3 65.02 0.2888 2.667 5.333 8.000 8 | 220 [ 4.0538
4 7813 0.3972 3.667 7.333 11.000 " n 4.0538
5 82.33 0.4333 4.000 8.000 12.000 12 222 4.0538
6] 9893 0.5776 5.333 10.665 15.998 16 | 400 | 40541
7] 111.83 0.6859 6.333 12.665 18.998 19 | 331 4.0540
8] 116.36 0.7220 6.666 13.331 19.997 20 | 420 | 4.0541
Bravais lattice 1s Face-Centered Cubic
Chapter 3 -116@
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(6) Calculate lattice parameters.
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1 sin’ @ ~ sin’ 8 i

Peak " sin® 9. " an? 0. 13y _‘"‘1_-9

No. 26 sin’@ sin 0, | P2+ | bkl | a (A)
1 3843 0.1083 1.000 2.000 3.000 3| m 4.0538
2] 44867 0.1444 1.333 2.667 4.000 4 | 200 | 4.0539
3| 6502 0.2888 2.667 5.333 8.000 8 | 220 | 4.0538
4 78.13 0.3972 3.667 7.333 11.000 1" an 4.0538
5 8233 04333 4.000 8.000 12.000 12 | 222 | 4.0538
6] 98.93 0.5776 5.333 10.665 15.998 16 | 400 4.0541
7| 111.83 0.6859 6.333 12.665 18.998 19 | 331 | 4.0540
8| 116.36 0.7220 6.666 13.331 19.997 20 | 420 4.0541

Average lattice parameter 15 4,0539 A

Chapter3-117

SUMMARY

+ Atoms may assemble into crystalline or
amorphous structures.

+ Common metallic crystal structures are FCC, BCC, and
HCP. Coordination number and atomic packing factor
are the same for both FCC and HCP crystal structures.

» We can predict the density of a material, provided we
know the atomic weight, atomic radius, and crystal
geometry (e.g., FCC, BCC, HCP).

+ Crystallographic points, directions and planes are
specified in terms of indexing schemes.
Crystallographic directions and planes are related
to atomic linear densities and planar densities.
Chap(era-ﬁs

117

SUMMARY

» Materials can be single crystals or polycrystalline.
Material properties generally vary with single crystal
orientation (i.e., they are anisotropic), but are generally
non-directional (i.e., they are isotropic) in polycrystals
with randomly oriented grains.

+ Some materials can have more than one crystal
structure. This is referred to as polymorphism (or
allotropy).

» X-ray diffraction is used for crystal structure and
interplanar spacing determinations.

ChaplerS-MQ@
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ANNOUNCEMENTS
Reading:

Core Problems:

Self-help Problems:

Chapler3-120@
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